Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Technol Innov ; 27: 102775, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1907017

ABSTRACT

The apparent uncertainty associated with shedding patterns, environmental impacts, and sample processing strategies have greatly influenced the variability of SARS-CoV-2 concentrations in wastewater. This study evaluates the use of a new normalization approach using human RNase P for the logic estimation of SARS-CoV-2 viral load in wastewater. SARS-CoV-2 variants outbreak was monitored during the circulating wave between February and August 2021. Sewage samples were collected from five major wastewater treatment plants and subsequently analyzed to determine the viral loads in the wastewater. SARS-CoV-2 was detected in all the samples where the wastewater Ct values exhibited a similar trend as the reported number of new daily positive cases in the country. The infected population number was estimated using a mathematical model that compensated for RNA decay due to wastewater temperature and sewer residence time, and which indicated that the number of positive cases circulating in the population declined from 765,729 ± 142,080 to 2,303 ± 464 during the sampling period. Genomic analyses of SARS-CoV-2 of thirty wastewater samples collected between March 2021 and April 2021 revealed that alpha (B.1.1.7) and beta (B.1.351) were among the dominant variants of concern (VOC) in Qatar. The findings of this study imply that the normalization of data allows a more realistic assessment of incidence trends within the population.

2.
Sci Total Environ ; 774: 145608, 2021 Jun 20.
Article in English | MEDLINE | ID: covidwho-1071915

ABSTRACT

Raw municipal wastewater from five wastewater treatment plants representing the vast majority of the Qatar population was sampled between the third week of June 2020 and the end of August 2020, during the period of declining cases after the peak of the first wave of infection in May 2020. The N1 region of the SARS-CoV-2 genome was used to quantify the viral load in the wastewater using RT-qPCR. The trend in Ct values in the wastewater samples mirrored the number of new daily positive cases officially reported for the country, confirmed by RT-qPCR testing of naso-pharyngeal swabs. SARS-CoV-2 RNA was detected in 100% of the influent wastewater samples (7889 ± 1421 copy/L - 542,056 ± 25,775 copy/L, based on the N1 assay). A mathematical model for wastewater-based epidemiology was developed and used to estimate the number of people in the population infected with COVID-19 from the N1 Ct values in the wastewater samples. The estimated number of infected population on any given day using the wastewater-based epidemiology approach declined from 542,313 ± 51,159 to 31,181 ± 3081 over the course of the sampling period, which was significantly higher than the officially reported numbers. However, seroprevalence data from Qatar indicates that diagnosed infections represented only about 10% of actual cases. The model estimates were lower than the corrected numbers based on application of a static diagnosis ratio of 10% to the RT-qPCR identified cases, which is assumed to be due to the difficulty in quantifying RNA losses as a model term. However, these results indicate that the presented WBE modeling approach allows for a realistic assessment of incidence trend in a given population, with a more reliable estimation of the number of infected people at any given point in time than can be achieved using human biomonitoring alone.


Subject(s)
COVID-19 , SARS-CoV-2 , Disease Outbreaks , Humans , Qatar/epidemiology , RNA, Viral , Seroepidemiologic Studies , Wastewater , Wastewater-Based Epidemiological Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL